Polymer based carbons as potential materials for energy storage in Lithium /Oxygen batteries
نویسندگان
چکیده
Porous carbon aerogels are prepared by polycondensation of resorcinol (R) and formaldehyde (F) catalyzed by sodium carbonate (C) followed by carbonization of the resultant aerogels at 800 ̊C in an inert atmosphere. The porous texture of the carbons has been adjusted by the change of the molar ratio of resorcinol to catalyst (R/C) in the gel precursors in the range of 100 to 500. The porous structure of the aerogels and carbon aerogels are characterized by N2 adsorption-desorption measurements at 77 K. It is found that total pore volume and average pore diameter of the carbons increase with increase in the R/C ratio of the gel precursors. The prepared carbon aerogels are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested by using them as cathodes in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that with an increase of R/C ratio, the specific capacity of the Li/O2 cell fabricated from the carbon aerogels increases from 716 to 2077 mA h g. The resulting voltage profiles for the first ten charge/discharge cycles indicate that the carbon samples possess excellent stability on cycling.
منابع مشابه
Electrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملImproved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملHoneycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety
Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer m...
متن کاملNanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries.
Although lithium-ion batteries are traditionally considered to be the most promising candidate for electrochemical energy storage owing to their relatively long cycle life and high energy efficiency, their limited energy density as well as high cost are still causing a bottleneck for their long-term applications. Alternatively, rechargeable Li-O2 batteries have the potential to practically prov...
متن کاملPaper‐Based Electrodes for Flexible Energy Storage Devices
Paper-based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li-ion batteries, Li-S batteries, Li-oxygen batteries. This review summarizes recent advances in the synthesis of paper-based electrodes, including paper-supported electrodes and paper-like electrodes. Their structural features, electrochemical performances...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008